
Shift Left Performance
Automated Code inspection for Performance

©Appentra Solutions S.L.
April 2022

Codee Training Series
April 26-27, 2022

Shift Left Performance

Third: Addressing more GPU challenges with Codee

2

#3 Usage of Codee for GPU programming (2/2)

● The GPU programming challenges

● Codee’s support to identify defects in data transfers

● Hands-on: Optimizing MATMUL on Perlmutter

Format: sessions

● Remote lectures (~30’), demos, and hands-on exercises

Shift Left Performance CONFIDENTIAL

Performance Optimization
Platform

Opportunities (OPP)
Sequential, vectorization, multi-threading and GPU offloading

Recommendations (PWR)
Boost performance and ensure best practices

Defects (PWD)
Find and fix bugs in parallel code and correctness verification

Remarks (RMK)
Proficient usage of tools

examples/matmul$ pwreport src/main.c:15 --level 2 -- -I src/include
Compiler flags: -I src/include

ACTIONS REPORT

 FUNCTION BEGIN at src/main.c:matmul:6:1
 6: void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {

 LOOP BEGIN at src/main.c:matmul:15:5
 15: for (size_t i = 0; i < m; i++) {

 [PWR010] src/main.c:15:5 'B' multi-dimensional array not accessed in row-major order
 [RMK005] src/main.c:18:28 avoid non-consecutive array access for variable 'A' to improve performance
 [RMK005] src/main.c:18:38 avoid non-consecutive array access for variable 'B' to improve performance
 [RMK005] src/main.c:18:25 avoid non-consecutive array access for variable 'C' to improve performance
 [RMK005] src/main.c:18:25 avoid non-consecutive array access for variable 'C' to improve performance

 [OPP001] src/main.c:15:5 is a multi-threading opportunity
 [OPP003] src/main.c:15:5 is a offload opportunity
 LOOP END
 FUNCTION END

 FUNCTION BEGIN at src/main.c:main:24:1
 24: int main(int argc, char *argv[]) {

 FUNCTION END

Full workflow support: CI/CD, repository, IDE and issue
trackers

Compliance with performance optimization best practices
(memory usage, vectorization, multi-threading, offload)

Report human-readable actionable recommendations
on where and how to fix performance issues

Automated fixes to actually implement code changes

Scan source code without executing that code

Optimize performance for microprocessors
(x86, Arm, Power) and accelerators (GPU)

Customization and extension of built-in rule set

3
3

Shift Left Performance 4

https://www.codee.com/knowledge/

Open Catalog of Coding Rules for Performance

Recommendations (40)
PWR001: Declare global variables as function parameters
PWR002: Declare scalar variables in the smallest possible scope
PWR003: Explicitly declare pure functions
PWR004: Declare OpenMP scoping for all variables

Opportunities (3)
OPP001: Multi-threading opportunity
OPP002: SIMD opportunity
OPP003: Offloading opportunity

Defects (11)
PWD002: Unprotected multithreading reduction operation
PWD003: Missing array range in data copy to the GPU
PWD004: Out-of-memory-bounds array access
PWD005: Array range copied to or from the GPU does not cover
the used range

Remarks (14)
RMK001: Loop nesting that might benefit from hybrid
parallelization using multithreading and SIMD
RMK002: Loop nesting that might benefit from hybrid
parallelization using offloading and SIMD
RMK003: Potentially privatizable temporary variable

Glossary (22)
Locality of Reference
Loop fission
Loop interchange
Loop sectioning
Loop tiling
Loop unswitching
Loop-carried dependencies
Memory access pattern
Multithreading
Offloading

https://www.codee.com/knowledge/
https://www.codee.com/knowledge/pwr001
https://www.codee.com/knowledge/pwr002
https://www.codee.com/knowledge/pwr003
https://www.codee.com/knowledge/pwr004
https://www.codee.com/knowledge/opp001
https://www.codee.com/knowledge/opp002
https://www.codee.com/knowledge/opp003
https://www.codee.com/knowledge/pwd002
https://www.codee.com/knowledge/pwd003
https://www.codee.com/knowledge/pwd004
https://www.codee.com/knowledge/pwd005
https://www.codee.com/knowledge/pwd005
https://www.codee.com/knowledge/rmk001
https://www.codee.com/knowledge/rmk001
https://www.codee.com/knowledge/rmk002
https://www.codee.com/knowledge/rmk002
https://www.codee.com/knowledge/rmk003
https://www.codee.com/knowledge/glossary-locality-of-reference/
https://www.codee.com/knowledge/glossary-loop-fission/
https://www.codee.com/knowledge/glossary-loop-interchange/
https://www.codee.com/knowledge/glossary-loop-sectioning/
https://www.codee.com/knowledge/glossary-loop-tiling/
https://www.codee.com/knowledge/glossary-loop-unswitching/
https://www.codee.com/knowledge/glossary-loop-carried-dependencies/
https://www.codee.com/knowledge/glossary-memory-access-pattern/
https://www.codee.com/knowledge/glossary-multithreading/
https://www.codee.com/knowledge/glossary-offloading/

Shift Left Performance CONFIDENTIAL

Open Catalog of Coding Rules for Performance: Defects

📄 PWR006: Avoid privatization of read-only
variables

📄 PWD001: Invalid OpenMP multithreading
datascoping

📄 PWD002: Unprotected multithreading
reduction operation

📄 PWD004: Out-of-memory-bounds array
access

📄 PWD007: Unprotected multithreading
recurrence

📄 PWD008: Unprotected multithreading
recurrence due to
out-of-dimension-bounds array access

📄 PWD009: Incorrect privatization in
OpenMP parallel region

📄 PWD010: Incorrect sharing in OpenMP
parallel region

📄 PWD011: Missing OpenMP last private
clause

📄 RMK003: Potential temporary variable for
the loop which might be privatizable, thus
enabling the loop parallelization

Sequential optimizations

5

SIMD/Vector execution Multi-threaded execution Offloading to accelerators

📄 PWR001: Declare global variables as
function parameters

📄 PWR002: Declare scalar variables in the
smallest possible scope

📄 PWR003: Explicitly declare pure
functions

📄 PWR004: Declare OpenMP scoping for
all variables

📄 PWR007: Disable implicit declaration of
variables

📄 PWR008: Declare the intent for each
procedure parameter

📄 PWR010: Avoid column-major array
access in C/C++

📄 PWR012: Pass only required fields from
derived data types as parameters

📄 RMK004: Avoid strided array access
to improve performance

📄 RMK005: Avoid non-consecutive
array access to improve performance

📄 RMK006: Avoid indirect array access
to improve performance

📄 PWR017: Transform while into for loop in
order to allow vectorization

📄 PWR018: Call to recursive function within a
loop may inhibit vectorization

📄 PWR019: Consider interchanging loops to
favor vectorization by maximizing inner loop’s
trip count

📄 PWR020: Consider loop fission to enable
vectorization

📄 PWR021: Temporary computation can be
extracted to a vectorizable loop

📄 PWR022: Move invariant conditional out of
the loop to facilitate vectorization

📄 PWR023: Add ‘restrict’ for pointer function
parameters to hint the compiler that
vectorization is safe

📄 PWR009: Use OpenMP teams to offload work
to GPU

📄 PWR013: Avoid copying unused variables to
the GPU

📄 PWR015: Avoid copying unnecessary array
elements to or from the GPU

📄 PWR024: Loop can be rewritten in OpenMP
canonical form

📄 PWR025: Consider annotating pure function
with OpenMP ‘declare simd’

📄 PWR026: Annotate function for OpenMP
offload

📄 PWR027: Annotate function for OpenACC
offload

📄 PWD003: Missing array range in data
copy to the GPU

📄 PWD005: Array range copied to or from
the GPU does not cover the used range

📄 PWD006: Missing deep copy of
non-contiguous data to the GPU

https://www.codee.com/knowledge/

https://www.codee.com/knowledge/

Shift Left Performance

The GPU Programming Challenges in this Introductory Course

6

Challenge #1: Find opportunities for offloading

● Code patterns: computation patterns (eg. loops will execute correctly on the GPU)
● On GPUs: Start offloading computations to the GPU, guaranteed correctness!
● On CPUs: Usually the same code analysis is required to execute the computations in parallel correctly!

Challenge #2: Optimize memory layout for data transfers

● Code patterns: memory patterns (eg. shaping arrays)
● On GPUs: Watch your data structure design as it may break your code!
● On CPUs: Hardware keeps memory consistency, so focus mostly on locality!

Challenge #3: Identify defects in data transfers

● Code patterns: computation and memory patterns (eg. deep copy)
● On GPUs: Data transfers for complex data structs are often not managed automatically!
● On CPUs: Often not a big issue as there is shared memory!

Shift Left Performance

Why using additional tools apart from APIs?

● The OpenACC Application Programming Interface. Version 2.7 (November 2018) 🔗
○ “does not describe automatic detection of parallel regions or automatic offloading of regions of code to

an accelerator by a compiler or other tool.”
○ “if one thread updates a memory location and another reads the same location, or two threads store a

value to the same location, the hardware may not guarantee the same result for each execution.”
○ “it is (...) possible to write a compute region that produces inconsistent numerical results.”
○ “Programmers need to be very careful that the program uses appropriate synchronization to ensure

that an assignment or modification by a thread on any device to data in shared memory is complete and
available before that data is used by another thread on the same or another device.”

● Programmers are responsible for making good use of Application Programming Interface (API)

○ This applies to OpenACC, OpenMP
○ But also to any other API, such as MPI, compiler pragmas, and even the programming language itself

7

https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf

Shift Left Performance CONFIDENTIAL

1 2 3

4 5 0

0 6 0

MATRIX 3x3

Shaping Arrays 2D in OpenMP/OpenACC

● Matrices are typically implemented as “arrays 2D”, but what is the
actual memory layout?
○ It depends on the programming language: row-major in C/C++ and

column-major in Fortran.

● Developer can choose between static and dynamic memory
allocation.

● Actual data MAY NOT be stored in consecutive memory locations,
disabling compiler optimizations.

Shift Left Performance CONFIDENTIAL

How array shaping affects in OpenMP/OpenACC?

9

● Array shaping in OpenMP/OpenACC affects to how to code data transfers.
● And it also affects the correctness of the OpenMP/OpenACC code if the data layout is not managed

properly by the programmer (explicitly).

A

double A[3][3]
for(i) {
 for(j) {
 … A[i][j] …
 }
}

1 2 3 4 5 0 0 6 0

A

double **A = malloc(3)
for(i) {
 A[i] = malloc(3)
}
for(i) {
 for(j) {
 … A[i][j] …
 }
}

copy(A[0:3][0:3])FAIL

OK copy(A[0:3][0:3])

1 2 3

4 5 0

0 6 0

codee_com

company/codee-com/

www.codee.com

info@codee.com

Subscribe: codee.com/newsletter/

USA - Spain

https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

